Lernfähige künstliche Synapsen entwickelt

Unternehmen
Tools
Typographie
  • Smaller Small Medium Big Bigger
  • Default Helvetica Segoe Georgia Times

Forscher des Technologiekonzerns Heraeus und der Jülich Aachen Research Alliance (JARA) haben herausgefunden, wie sich die Schalteigenschaften künstlicher Synapsen gezielt beeinflussen lassen.

So genannte Memristoren – elektrische Bauelemente, die wie ein „Widerstand mit Gedächtnis“ zwischen einem niedrigen und einem hohen Wert hin und her geschaltet werden können – gelten als vielversprechende Alternative zu herkömmlichen Bauelementen in Computerchips. Sie funktionieren prinzipiell wie eine Synapse des biologischen Nervensystems und kommen zudem mit extrem wenig Strom aus. „Memristive Elemente gelten als ideale Kandidaten für neuro-inspirierte Computer nach dem Vorbild des Gehirns, die im Zusammenhang mit Deep Learning und künstlicher Intelligenz großes Interesse wecken“, erläutert Dr. Ilia Valov vom Peter Grünberg Institut (PGI-7) des Forschungszentrums Jülich.

Von der Fachwelt bislang übersehen: Geheimnis sind Fremdatome in der Oxidschicht

Die Bauelemente, mit denen das Forschungsteam systematische Versuche durchgeführt hat, bestehen aus einer ultradünnen, amorphen Quarzglasschicht (Siliziumdioxid) zwischen einer Platin- und einer Kupfer-Elektrode. In der aktuellen Ausgabe der Open-Access-Zeitschrift Science Advances beschreiben die Forscher, wie sich die Schalteigenschaften memristiver Bauelemente gezielt beeinflussen lassen. Entscheidender Faktor ist demnach die Reinheit der zentralen Oxidschicht: In das zu 99,999999 Prozent reine Siliziumdioxid (8N) haben die Forscher gezielt Fremdatome eingebracht (Dotierung). „Durch die Einbringung von Fremdatomen beeinflussen wir die Löslichkeit und Transporteigenschaften der dünnen Oxidschichten“, erklärt Dr. Christian Neumann vom Technologiekonzern Heraeus. Dieser Effekt war von der Fachwelt bislang übersehen worden. Er lässt sich gezielt für das Design memristiver Systeme nutzen, ähnlich einer Dotierung von Halbleitern in der Informationstechnologie. Die gezielt dotierten Gläser wurden speziell vom Quarzglasspezialisten Heraeus Conamic entwickelt und hergestellt, der auch das Patent an den Materialien hält.

Mithilfe der gewonnenen Einsichten können Hersteller nun gezielt memristive Elemente mit den gewünschten Funktionen entwickeln. Denn memristive Elemente zeigen ein ähnliches Verhalten wie ihr biologisches Vorbild: Lern- und Merkfähigkeit des Gehirns sind wesentlich darauf zurückzuführen, dass sich die Verbindungen zwischen Nervenzellen sozusagen verstärken, wenn sie häufig genutzt werden. Bei künstlichen Synapsen erhöht sich die Leitfähigkeit mit der Zahl der eingehenden Spannungspulse. Durch Anlegen von Spannungspulsen gegenläufiger Polarität lassen sich die Veränderungen auch wieder rückgängig machen. Je höher nun die Dotierung – also die Anzahl von Fremdatomen in der Oxidschicht, umso langsamer ändert sich der Widerstand der Elemente mit der Zahl der eingehenden Spannungspulse und umso stabiler bleibt der Widerstand. „Damit haben wir eine Möglichkeit entdeckt, unterschiedlich erregbare Arten von künstlichen Synapsen zu konstruieren“, erklärt Ilia Valov.

Beweis der Theorie: Rekord bei Schaltzeit erreicht

Bei memristiven Bauelementen gibt es unterschiedliche Varianten wie etwa elektrochemische Metallisierungszellen (ECMs) oder Valenzwechsel-Zellen (VCMs). Die Forscher konnten anhand ihrer Versuchsreihen mit ECMs zeigen, dass sich mit der Menge an Fremdatomen auch die Schaltzeiten ändern. Besteht die mittlere Schicht aus 8N Siliziumdioxid, so schaltet das memristive Bauelement in 1,4 Nanosekunden. Bislang betrug der schnellste, jemals bei ECMs gemessene Wert etwa 10 Nanosekunden. Indem die Wissenschaftler die Oxidschicht der Bauelemente mit bis zu 10.000 ppm (parts per million) Fremdatomen dotierten, verlängerten sie die Schaltzeit gezielt bis in den Bereich von Millisekunden. Aufgrund von allgemein geltenden theoretischen Überlegungen, unterstützt durch experimentelle Ergebnisse, die in der Fachliteratur dokumentiert sind, ist das Forschungsteam davon überzeugt, dass der Dotierungseffekt nicht nur bei ECMs und VCMs, sondern bei allen memristiven Elementen auftritt.

Alle Forschungsergebnisse zu diesem Thema finden Sie in der Originalpublikation: Design of defect-chemical properties and device performance in memristive systems, Lübben et al., Science Advances, 2020 https://advances.sciencemag.org/content/6/19/eaaz9079

Gefällt Ihnen
VORSPRUNG-ONLINE?
Unterstützen Sie unabhängigen Journalismus!?
€0.50
€1
€2
€5
Eigener Betrag:
 
Powered by
BLOG COMMENTS POWERED BY DISQUS

PS: Sind Sie bei Facebook? Werden Sie Fan von VORSPRUNG!